# ORACLE®



# ORACLE®

## **Oracle memory Managment**

Bryan Grenn
Principal Engineered systems sales consultant



Specialized. Recognized by Oracle. Preferred by Customers.

## Meltdown



## **Topics for Today**

- SGA/PGA settings
- Huge pages
- How to size your machine
- Cursor sharing
- Result cache
- Extra Credit -- NUMA vs UMA







## Sga



## **SGA/PGA** settings

- Automatic Memory Management
- SGA\_TARGET/PGA\_TARGET
- Manual Memory managment

## **Automatic Memory Management**

SGA and PGA are set by the system

## SGA\_TARGET/PGA\_TARGET

SGA\_target/SGA\_MAX\_SIZE is set

PGA\_TARGET is set

## **Manual Memory management**

SGA\_TARGET=0, Memory\_TARGET=0

### Different block sizes

- Example of Setting Block and Cache Sizes
- DB\_BLOCK\_SIZE=4096
- DB\_CACHE\_SIZE=1024M
   DB\_2K\_CACHE\_SIZE=256M
   DB\_8K\_CACHE\_SIZE=512M

### **DB** block buffers



## **Redo log buffers**



## **PGA** sizing

- For OLTP: PGA\_AGGREGATE\_TARGET = (total\_mem \* 80%) \* 20%
- For DSS: PGA\_AGGREGATE\_TARGET = (total\_mem \* 80%) \* 50%
- where total\_mem is the total amount of physical memory available on the system

## **SGA** sizing

- Shared pool
- Buffer cache
- Redo log buffer size

# **Sizing Examples**

|                        | Count | Size per | Total (g) |
|------------------------|-------|----------|-----------|
| Server sizing          |       |          | 128       |
|                        |       |          |           |
| Available (size * 80%) |       |          | 102.4     |
|                        |       |          |           |
| SGA                    |       |          | 60        |
|                        |       |          |           |
| pga                    |       |          | 10        |
|                        |       |          |           |
| Processes              | 2000  | 0.015    | 30        |
|                        |       |          |           |
|                        |       |          | 100       |

## SGA (how am I doing)

#### **Buffer Pool Advisory**

- . Only rows with estimated physical reads >0 are displayed
- · ordered by Block Size, Buffers For Estimate

| Р | Size for Est (M) | Size Factor | Buffers (thousands) | Est Phys Read Factor | Estimated Phys Reads (thousands) | Est Phys Read Time | Est %DBtime for Rds |
|---|------------------|-------------|---------------------|----------------------|----------------------------------|--------------------|---------------------|
| D | 2,176            | 0.10        | 258                 | 7.68                 | 8,869,926                        | 1                  | 655530.00           |
| D | 4,352            | 0.19        | 515                 | 4.42                 | 5,106,667                        | 1                  | 377407.00           |
| D | 6,528            | 0.29        | 773                 | 2.84                 | 3,278,767                        | 1                  | 242316.00           |
| D | 8,704            | 0.39        | 1,030               | 2.02                 | 2,335,730                        | 1                  | 172621.00           |
| D | 10,880           | 0.49        | 1,288               | 1.60                 | 1,850,157                        | 1                  | 136735.00           |
| D | 13,056           | 0.58        | 1,545               | 1.38                 | 1,594,726                        | 1                  | 117858.00           |
| D | 15,232           | 0.68        | 1,803               | 1.24                 | 1,436,394                        | 1                  | 106156.00           |
| D | 17,408           | 0.78        | 2,060               | 1.15                 | 1,322,669                        | 1                  | 97751.00            |
| D | 19,584           | 0.87        | 2,318               | 1.07                 | 1,234,705                        | 1                  | 91250.00            |
| D | 21,760           | 0.97        | 2,576               | 1.01                 | 1,169,052                        | 1                  | 86398.00            |
| D | 22,400           | 1.00        | 2,651               | 1.00                 | 1,154,201                        | 1                  | 85301.00            |
| D | 23,936           | 1.07        | 2,833               | 0.97                 | 1,118,626                        | 1                  | 82671.00            |
| D | 26,112           | 1.17        | 3,091               | 0.94                 | 1,079,712                        | 1                  | 79795.00            |
| D | 28,288           | 1.26        | 3,348               | 0.91                 | 1,047,479                        | 1                  | 77413.00            |
| D | 30,464           | 1.36        | 3,606               | 0.88                 | 1,019,564                        | 1                  | 75350.00            |
| D | 32,640           | 1.46        | 3,863               | 0.86                 | 996,992                          | 1                  | 73682.00            |
| D | 34,816           | 1.55        | 4,121               | 0.85                 | 977,415                          | 1                  | 72235.00            |
| D | 36,992           | 1.65        | 4,378               | 0.83                 | 960,188                          | 1                  | 70962.00            |
| D | 39,168           | 1.75        | 4,636               | 0.82                 | 944,727                          | 1                  | 69819.00            |
| D | 41,344           | 1.85        | 4,893               | 0.81                 | 930,714                          | 1                  | 68784.00            |
| D | 43,520           | 1.94        | 5,151               | 0.71                 | 817,948                          | 1                  | 60450.00            |

## **PGA** (how am I doing)

#### **PGA Aggr Target Histogram**

· Optimal Executions are purely in-memory operations

| Low Optimal | High Optimal | <b>Total Execs</b> | Optimal Execs | 1-Pass Execs | M-Pass Execs |
|-------------|--------------|--------------------|---------------|--------------|--------------|
| 2K          | 4K           | 1,739,189          | 1,739,189     | 0            | 0            |
| 64K         | 128K         | 800                | 800           | 0            | 0            |
| 128K        | 256K         | 29,680             | 29,680        | 0            | 0            |
| 256K        | 512K         | 400                | 400           | 0            | 0            |
| 512K        | 1024K        | 82,725             | 82,725        | 0            | 0            |
| 1M          | 2M           | 10,743             | 10,743        | 0            | 0            |
| 2M          | 4M           | 1,504              | 1,484         | 20           | 0            |
| 4M          | 8M           | 606                | 604           | 2            | 0            |
| 8M          | 16M          | 576                | 576           | 0            | 0            |
| 16M         | 32M          | 17                 | 17            | 0            | 0            |

Back to Advisory Statistics
Back to Top

#### **PGA Memory Advisory**

When using Auto Memory Mgmt, minimally choose a pga\_aggregate\_target value where Estd PGA Overalloc Count is 0

| PGA Target Est (MB) | Size Factr | W/A MB Processed | Estd Extra W/A MB Read/ Written to Disk | Estd PGA Cache Hit % | Estd PGA Overalloc Count | Estd Time      |
|---------------------|------------|------------------|-----------------------------------------|----------------------|--------------------------|----------------|
| 640                 | 0.13       | 122,872,321.37   | 42,091,544.45                           | 74.00                | 821,738                  | 63,648,706,187 |
| 1,280               | 0.25       | 122,872,321.37   | 30,469,842.68                           | 80.00                | 553,402                  | 59,164,655,831 |
| 2,560               | 0.50       | 122,872,321.37   | 874,117.83                              | 99.00                | 0                        | 47,745,612,114 |
| 3,840               | 0.75       | 122,872,321.37   | 735,205.58                              | 99.00                | 0                        | 47,692,015,014 |
| 5,120               | 1.00       | 122,872,321.37   | 677,951.62                              | 99.00                | 0                        | 47,669,924,475 |
| 6,144               | 1.20       | 122,872,321.37   | 299,228.90                              | 100.00               | 0                        | 47,523,800,289 |
| 7,168               | 1.40       | 122,872,321.37   | 299,228.90                              | 100.00               | 0                        | 47,523,800,289 |
| 8,192               | 1.60       | 122,872,321.37   | 299,228.90                              | 100.00               | 0                        | 47,523,800,289 |
| 9,216               | 1.80       | 122,872,321.37   | 299,228.90                              | 100.00               | 0                        | 47,523,800,289 |
| 10,240              | 2.00       | 122,872,321.37   | 299,228.90                              | 100.00               | 0                        | 47,523,800,289 |

## Pga advice



## **Huge pages**

- To huge page or not ?
- vm.nr\_hugepages = 0 -- set to 0 or set to correct values
- Pros and cons of Huge pages

## **Using large pages**

- cat /proc/sys/vm/nr\_hugepages 0 To view the current setting using the sysctl command:
- # sysctl vm.nr\_hugepages vm.nr\_hugepages = 0 To set the number of huge pages using /proc entry:
- !grep -i huge /proc/meminfo
- HugePages\_Total: 800
- HugePages\_Free: 800
- HugePages\_Rsvd: 0
- Hugepagesize: 2048 kB

## use\_large\_pages

- Only –won't start
- True eithor (default)

## **Cursor sharing**

- FORCE -Forces statements that may differ in some literals, but are otherwise identical, to share a cursor, unless the literals affect the meaning of the statement.
- SIMILAR Causes statements that may differ in some literals, but are otherwise identical, to share a cursor, unless the literals affect either the meaning of the statement or the degree to which the plan is optimized.
- EXACT Only allows statements with identical text to share the same cursor.

## **Result cache**

Anyone use this ?

## Contact me

Email - <u>Bryan.grenn@oracle.com</u> Twitter - @bryangrenn Blog http://bryangrenn.blogspot.com

# ORACLE®

## Uma or NUMA ... what does this mean



## Assign CPU's to specific processes with Numactl

- Boot the database under numactl as follows: \$ numactl --cpunodebind=0,1,2,3 -interleave=0,1,2,3 sqlplus '/ as sysdba' blah blah blah
- http://linux.die.net/man/8/numactl